
An Open-source Implementation of LSTM and
GRU in the Ptolemy Simulation Framework

Vasilis Daoulas, Nikolaos Tampouratzis, Panagiotis Mousouliotis, Ioannis Papaefstathiou
School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

Email: {vntaoula, ntampouratzis, pmousoul, ygp}@ece.auth.gr

Abstract—Ptolemy II [1] is an open-source software framework
for modelling, simulation and design of concurrent, heteroge-
neous, real-time systems, including distributed/parallel systems
[2]. These systems can be described using the combination of
different formal as well as computation models. Ptolemy also
includes machine learning libraries providing support for particle
filtering, model-predictive control, hidden Markov models, and
various statistical analysis tools. However, one of the main
problems Ptolemy users face is the lack of fundamental recurrent
neural network structures. In this paper, an LSTM and a GRU
recurrent neural network are implemented in Ptolemy II frame-
work, in order to extend its machine learning library, enabling
users to develop their complex recurrent neural networks in
significantly less time. The presented work has been verified
through a real-world weather forecasting use case; the results
demonstrate that our approach has identical accuracy with one
of the most widely used machine learning library (i.e. Keras) in
all cases. To further increase the impact of our approach, the
complete source code is freely distributed to the community.

Index Terms—LSTM, GRU, Machine Learning, Ptolemy, Phys-
ical Simulation

I. INTRODUCTION

Machine learning is becoming ubiquitous in all kinds of

computing systems and especially in the cyber-physical ones.

Examples range from smart cameras and voice assistant sys-

tems, to drones and autonomous vehicles. The already complex

design of these systems is also burdened with the recent task

of adding machine learning capabilities to them. In order to

attack this problem a high-level model-based design approach

is required, such as the one provided by the Ptolemy II

framework [3]. Although the Ptolemy framework implements

many Models of Computation (MoC) and some actors related

to machine learning, such as particle filtering, it does not

provide implementations of contemporary machine learning

blocks such as the Long Short Term Memory (LSTM) network

[4] and the Gated Recurrent Unit (GRU) network [5].

Ptolemy II is based on a class of models called actor-

oriented models. Actors are components that execute concur-

rently and share data with each other by sending messages via

ports, providing a disciplined approach to heterogeneity and

concurrency [3]. The focus is to assemble the components

using well-defined Models of Computation (MoC), which

describe how the actors are related to each other. In this work,

we first use the Ptolemy II MoCs and basic actors to implement

classical neural networks. Then, we use these classical neural

networks as components for the development of the more

complex LSTM and GRU networks. Figure 1 shows our

Ptolemy II machine learning library which is implemented in

the context of this work. In every step of this process, we

evaluate the results by comparing them to the results of our

Keras-Tensorflow implementations.

Fig. 1. The implemented Ptolemy II machine learning library featuring LSTM
and GRU support. The lower blocks increase in complexity and make use of
the functionality of the upper or neighboring blocks.

The contribution of this paper can be summarized as fol-

lows:

€ The first known open-source GRU and LSTM network

implementations in the Ptolemy II framework utilizing

Ptolemy’s basic structures1.

€ An innovative flow to enable the designers to develop

their complex recurrent neural networks using our funda-

mental structures minimizing the development and veri-

fication time.

€ A thorough evaluation of the GRU and LSTM networks

based on a real weather forecasting problem.

Section II covers related work with emphasis in machine

learning support in model-based design tools. The following

two sections, III and IV, demonstrate the design and imple-

mentation of the classical neural networks and the contempo-

rary neural networks (LSTM and GRU) respectively. Section

V presents our results and section VI discusses conclusions

and future directions arising from this work.

1https://github.com/ntampouratzis/Ptolemy-Neural-Network978-1-6654-3326-6/21/$31.00 ©2021 European Union

20
21

 IE
EE

/A
CM

 2
5t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Di
st

rib
ut

ed
 S

im
ul

at
io

n
an

d
Re

al
 T

im
e

Ap
pl

ic
at

io
ns

 (D
S-

RT
) |

 9
78

-1
-6

65
4-

33
26

-6
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DS

-R
T5

21
67

.2
02

1.
95

76
13

7

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

II. RELATED WORK

Ptolemy, is not the only simulation framework with machine

learning capabilities. In this section, a number of the other

design and modelling tools and applications that fully support

Machine Learning models are presented.

A. Simulation Frameworks with Machine Learning Support

Simulink [6] is a MATLAB-based block diagram environ-

ment for multi-domain simulation and model-based design.

The latest version includes an application called Deep Network

Designer [7] for creating, editing, and displaying deep learning

neural networks. Other toolboxes related to machine learning

are: Statistics and Machine Learning Toolbox, Deep Learning

Toolbox, Computer Vision Toolbox.

Modelica [8] is a freely available, object-oriented language

for modeling large, complex and heterogeneous systems, espe-

cially those containing physical components (i.e. mechanical,

electrical, thermal, control, etc). In order to solve actual prob-

lems, Modelica needs a modeling and simulation environment

such as OpenModelica [9], Dymola [10] and MapleSim [11].

Scilab [12] is a free open-source numerically oriented pro-

gramming language, providing easy access to large numerical

libraries for signal processing, statistical analysis, numerical

optimization, and others. It has an interpreted programming

environment with matrices as the main data type. For modeling

and simulating dynamical systems, Scilab has a certain sub-

tool called Xcos [13].

gPROMS [14] is a commercial platform that provides a set

of advanced modeling tools. Those tools are built over an

advanced process modelling platform and a powerful equation-

oriented modelling and optimization framework. Two of those

tools are the gPROMS ModelBuilder and the gPROMS Pro-

cessBuilder. In order to support physical properties, gPROMS

uses Multiflash [15], a highly rigorous properties package that

supports equation-oriented modeling and all the commonly-

used thermodynamic and transport properties and models.

EnergyPlus [16] is a free, open-source simulation frame-

work for modeling and simulating both energy consumption

(heating, cooling, ventilation, lighting etc.) and water use in

buildings. It can handle many building and HVAC design

options either directly or indirectly through links to other

programs in order to calculate thermal loads and energy

consumption for a design day or an extended period of time.

However, it does not provide a user interface (it is a simulation

engine that reads input and writes output to text files).

SUMO (Simulation of Urban MObility) [17] is a free, open-

source, microscopic traffic simulation software designed to

handle large road networks. It allows modelling of traffic

systems including road vehicles, public transport and pedes-

trians. Each vehicle is modelled explicitly, has its own route,

and moves individually through the network. SUMO includes

a wealth of supporting tools, which handle tasks such as

route finding, visualization, network import and emission

calculation.

Among the presented physical simulation tools, Ptolemy

II satisfies the largest number of requirements of this work.

First of all, it is free and open-source while, unlike other

design and modeling tools, it can combine multiple models

of computation in order to simulate an environment more

efficiently and completely in a distributed manner. This means

that it can model physical, control, and other systems under a

single roof allowing for detailed and accurate simulations of

large scale systems.

B. Applications designed using advanced Mod-

elling/Simulation Frameworks

Ptolemy II includes a machine learning library developed by

Ilge Akkaya from University of Berkeley. In her PhD thesis

[18], Akkaya introduces an efficient, for real-time decision

making, actor-oriented design pattern for streaming data. In

addition, authors in [19] present the PILOT, a machine learning

toolkit for distributed robotic sensing and control applications

using a collection of machine learning and optimization al-

gorithms. PILOT enables Ptolemy system engineers to use

the toolkit in order to develop swarm applications that rely

on particle filtering, model-predictive control, hidden Markov

models, and multiple tools for statistical analysis.

Related to Matlab/Simulink, authors in [20] presented a

shape recognition technique using edge detection for classi-

fying 5 fruits. Also, in [21], authors introduced MatConvNet,

a Matlab toolbox for implementation of Convolutional Neural

Networks (CNNs).

Modelica is also used for solving machine learning prob-

lems. Authors in [22] introduce a machine learning method in

order to detect and diagnose three abnormal states in the Air

Handling Unit (AHU), the main component of HVAC systems.

Also, in [23], they apply a Batch Reinforcement Learning

(BRL) algorithm to a Thermostatically Controlled Load (TCL)

model, a detailed building and heating system implemented by

Modelica, in order to learn a meaningful control policy.

Scilab also supports machine learning toolboxes and it

has been used for many machine learning applications. For

example, in [24], Scilab is used in order to make a character

recognition system to extract printed text from an image.

Another work is done in [25], where authors choose Scilab

to develop a Random Forests (RF) toolbox, which contains

classification and regression functions, and they test it in a

handwritten digit recognition problem and compare the results

with Artificial Neural Networks (ANNs).

gPROMS has also been used in some works that need ma-

chine learning techniques. In [26], authors presented a model

of a post-combustion CO2 capture process using bootstrap

aggregated extreme learning machine (BA-ELM). Another

work is done in [27], where the authors developed a tool in

Python in order to try to model systems that are hard to be

understood and modeled.

There are also certain works that combine machine learning

with the EnergyPLUS simulator. In [28], authors talk about

the influence of the construction materials and the weather

influence on the room temperature and incoming air ventilation

temperature of a house in Upper Austria. Moreover in [29]

the Autotune methodology is introduced, a scientific method

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

of automating building energy modeling (BEM) calibration

using machine learning algorithms.

SUMO has also been combined with machine learning

features; Song Sang Koh’s LiFE Project [30] focuses on the

optimization of urban transport networks through the use of

artificial intelligence, utilizing a certain SUMO feature, the

Traffic Control Interface (TraCI).

III. IMPLEMENTATION OF A CLASSICAL NEURAL

NETWORK

The basic building block of the LSTM and the GRU

networks is the fully connected (FC) layer. In this layer, a

vector-matrix multiplication is performed. An input vector,

consisting of xi components, is multiplied element-wise with

the weights wi of each neuron of the FC layer. Subsequently,

a bias b scalar value is added to each element of the resulted

output vector. After these operations, an activation function f

is applied. Usually, the activation function is merged with the

FC layer, but in this work it consists a separate layer. In Figure

2 a small two-layer classical neural network is depicted.

Fig. 2. A classical neural network with two merged FC-activation-function
layers; one is the hidden layer and the other is the output layer

Implementing classical neural networks, consisting of FC

and activation layers, is the first step towards the LSTM and

GRU cells implementation. In this section we first implement

a FC layer and then use it as a building block for a classical

neural network trained for the handwritten digit recognition

task [31].

A. Fully Connected Layer

Fig. 3. FC layer implementation in Ptolemy II

Figure 3 shows the FC layer implementation in Ptolemy II.

The main Ptolemy-actors in this figure are the MultiplyDivide

and the AddSubtract. The rest of the actors are related to how

we move the data between the layers of the neural network;

this data movement is done in sequences of data tokens. Figure

4 shows the FC layer implementation at a higher level of

abstraction; at this level, the parameters of the layer, such

as the input vector and the weights matrix dimensions, can

be set. The inputs of the FC layer are the sequence of the

input data, and the file names holding the weight and the bias

values; the output is the resulting output vector. In Ptolemy

terminology, Figure 4 depicts a composite actor (i.e. an actor

which contains other actors). In this way hierarchical design

of models is achieved. Additionally, the FC composite actor is

also a transparent one, as opposed to an opaque one, meaning

that FC does not contain a director for determining the MoC

it follows; the MoC for the FC actor will be determined by

entities that will contain the FC actor. On the other hand an

opaque actor contains a director which determines the MoC.

Fig. 4. FC layer at a higher level of abstraction

B. Sigmoid Activation Function

In a neural network, activation functions map the output of

the neurons to new values that depend on the formula of the

activation function; as such an example, the sigmoid activation

function’s formula and graph are depicted in Figure 5.

Fig. 5. The sigmoid activation function

The sigmoid is a non-linear activation function; it has a

derivative function which is related to the inputs allowing

to apply the back-propagation (gradient descent) algorithm

[32] to train the network. Additionally, the non-linear property

allows the stacking of multiple hidden layers, which make the

neural network able to learn complex data sets with high levels

of accuracy.

The Ptolemy implementation of the sigmoid activation func-

tion, shown in Figure 6, is really simple since it uses only

one, but powerful, actor, the expression actor. The expression

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

actor evaluates an expression that may include references to

the inputs, current time, and a count of the firing (number of

executions). As it is the case with the FC actor, sigmoid is a

transparent composite actor.

Fig. 6. The Ptolemy sigmoid activation function implementation

C. Handwritten Digit Recognition

We have used Python to train a neural network consisting

of two FC and two sigmoid layers. Referring to Figure

2, this network has an input layer consisting of 784 data

elements, a hidden layer consisting of 30 neurons and an

output layer consisting of 10 neurons. The first FC-sigmoid

layer combination maps to the hidden layer and the second

FC-sigmoid layer combination maps to the output layer. This

neural network takes as input 28× 28 = 784 grayscale image

pixel values normalized in the [0, 1] range, and produces as

output 10 probabilities, one for each digit in the range [0, 9].
The Ptolemy implementation of this neural network is shown

in Figure 7.

Unlike the FC and the sigmoid actors, the Handwritten Digit

Recognition (HDR) actor is an opaque composite actor and

has a Synchronous Dataflow (SDF) director indicating the

use of the SDF MoC [33]. SDF is usually an untimed MoC

(time does not advance as the SDF model executes) and its

operation is described by the firing of the actors consuming

and producing a fixed amount of data in their input/output

ports. Communication between actors is implemented by first-

in, first-out (FIFO) queues with fixed finite capacity, and

the execution order of the actors is statically scheduled. The

main important advantages of the SDF MoC is the static

check for potential deadlock and boundedness, and the static

computation of schedules.

IV. GRU & LSTM IMPLEMENTATION

LSTM and GRU networks belong to a special family of

neural networks, the Recurrent Neural Networks (RNNs). The

main differences compared to the classical neural networks

are: (a) the use of sequence of vectors as input, and (b) the

notion of internal state which implies memory. Figure 8 shows

an RNN unrolled over time; it is clear that the current RNN

output depends on both the current input and the previous

internal state.

Fig. 8. An RNN unrolled over time [34]

In the past few years, there has been an incredible success

in applying RNNs to a variety of problems such as: speech

recognition, language modeling, translation, image captioning

etc. However, a traditional RNN network architecture cannot

be used for processing very long input sequences. The solution

to this problem is provided by the LSTM and the GRU RNN

architectures. The basic LSTM and GRU structures, called also

LSTM and GRU cells, are depicted in Figure 9 along with a

general form of their equations. The light orange blocks in

Figure 9, named Neural Network Layer, are in fact FC layers

followed by the activation function written inside the blocks;

σ stands for the aforementioned sigmoid activation function,

whereas tanh stands for homonymous activation function,

which will be presented next. After that, the GRU and LSTM

cell Ptolemy implementations will be analyzed followed by

the full GRU and LSTM network implementations.

A. Tanh Activation Function

The tanh activation function is described by the following

equation:

tanh(z) =
ex − eŠ x

ex + eŠ x
=

2

1 + eŠ 2x
− 1 = 2 · σ(2z)− 1

which shows that the tanh activation function is in fact a

scaled version of the sigmoid activation function and as such

it shares the same properties as the sigmoid function. Figure

10 shows the ptolemy implementation of the tanh activation

function.

B. GRU Cell

The equations describing the main GRU computation com-

ponents, also called gates, are:

zt = σ(xtWz + bxz + htŠ 1Uz + bhz)

Fig. 7. Ptolemy Handwritten Digit Recognition Actor Implementation

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. LSTM and GRU Cell Architecture and Equations [34]; the basic
building block of the LSTM/GRU cells is the FC layer (Neural Network
layer)

Fig. 10. The tanh activation function

rt = σ(xtWr + bxr + htŠ 1Ur + bhr)

�ht = tanh(xtWh + bxh + rt ⊗ (htŠ 1Uh + bhh))

ht = (1− zt)⊗ htŠ 1 + zt ⊗ �ht

where zt is the output of the Update Gate, rt is the output of

the Reset Gate, �ht is the output of the Current Memory Content

Gate, and the ht is the output of the GRU cell. Additionally, xt

denotes the Input Sequence, σ denotes the Sigmoid activation

function, tanh denotes the tanh activation function, ⊗ denotes

the Hadamard product, W denotes the weights for the input

sequence, U denotes the weights for the hidden state (htŠ 1),

and b denotes the biases.

The GRU cell implementation in Ptolemy is shown in Figure

11. The GRU cell is a transparent composite actor and it

is used in the GRU network implementation where an SDF

director is in charge.

C. LSTM Cell

The equations describing the LSTM gates are:

ft = σ(xtWf + htŠ 1Uf + bf)

it = σ(xtWi + htŠ 1Ui + bi)

�ct = tanh(xtWc + htŠ 1Uc + bc)

ct = ft ⊗ CtŠ 1 + it ⊗ �ct

ot = σ(xtWo + htŠ 1Uo + bo)

ht = ot ⊗ tanh(Ct)

where ft is the output of the Forget Gate, it is the output of

the Input Gate, �Ct is the output of the g Gate (or Candidate

Cell State), ot is the output of the Output Gate, and the ht

is the output of the LSTM cell. Again, xt denotes the Input

Sequence, σ denotes the Sigmoid activation function, tanh

denotes the tanh activation function, ⊗ denotes the Hadamard

product, W denotes the weights for the input sequence, U

denotes the weights for the hidden state (htŠ 1), and b denotes

the biases.

The LSTM cell implementation in Ptolemy is shown in

Figure 12. The LSTM cell is a transparent composite actor

and it is used in the LSTM network implementation where an

SDF director is in charge.

D. GRU/LSTM Network

We have used the GRU cell to build a network for making

temperature predictions. This network consists of the GRU

cell followed by an FC (also called a dense) layer. A first

attempt to implement this network in Ptolemy using the actor

topology shown in Figure 13 has not been successful. The

reason is that after the first iteration, the GRU cell component

actors are driven to data starvation because the corresponding

weight/bias file reader actors do not have any more data to

use and fire (execute) again in the second GRU iteration.

This “issue” is related to the operation of the GRU Network

which is trained, using Keras/Tensorflow, based on an input

sequence of 240 14-valued weather data vectors; the output is

a temperature prediction for the next day. At a specific time

of the day, the GRU Network is trained to take as input the

hourly weather data measurements (14-valued weather data) of

the past 240 hours (10 days back) and predict the temperature

of the next day at the same specific time. In order to implement

a model of this network in Ptolemy we use the Modal Models,

which are finite state machines (FSMs) with state refinements.

State refinements are used to contain and execute a whole

model as a state. Using the ModalModel Ptolemy actor, it is

Fig. 11. GRU cell Ptolemy implementation

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. LSTM cell Ptolemy implementation

Fig. 13. A First Attempt of a GRU Network Implementation in Ptolemy

possible to implement the recurrency required by the GRU

Network.

Figure 14 shows the GRU Network Predictor implemen-

tation in Ptolemy. The firstGRUstep refinement is used to

provide a zero vector at the initial hidden-state htŠ 1 at

the beginning of each prediction. After that, the GRU cell

continues its processing in the restGRUsteps for another 239

14-valued input vectors; a register actor is used for storing

and providing the updated hidden state htŠ 1. Finally, after

feeding 240 input vectors to the GRU cell, the output vector

produced is given to a FC layer to calculate a prediction which

is passed to a de-normalization actor (this is dataset specific)

which calculates the final raw temperature value.

We have used the same implementation architecture as

that of Figure 14 to implement an LSTM based temperature

predictor consisting of one LSTM cell and a FC layer. The

main differences are the use of two registers (one for htŠ 1

and one for CtŠ 1), and the use of LSTM cells in the modal

model state refinements.

V. EVALUATION & RESULTS

To evaluate the above network implementations, a hand-

written digit recognition problem was utilized for evaluating

the classical neural network, and a temperature forecasting

problem with sequences of weather data for the GRU and

the LSTM networks. The Ptolemy predictions are compared

to the corresponding Python/Keras implementations to verify

each Ptolemy model correctness.

A. Evaluation of the Classical Neural Network Model

The classical neural network (from Section III) has been ap-

plied to a handwritten digit recognition task [35]. The MNIST

dataset was used, which contains a Training set consisting of

60.000 scanned images of handwritten digits, and a Test set

consisting of 10.000 scanned images of handwritten digits. The

training set is split to 50.000 images for training and 10.000

images for validation2. Figure 15 shows the neural network

operation in Ptolemy using as input the handwritten digit 3.

A discrete-event DE director is used in this model in order to

provide a notion of time to the model. The Ptolemy model’s

results match to those provided by the Python implementation.

B. GRU & LSTM Networks

The purpose of these networks, is to predict the temperature

24 hours in the future, taking into consideration data from

the past 10 days. The dataset of this problem is a set of

time series data recorded at the weather station of the Max

Planck Institute for Biogeochemistry in Jena, Germany. It

contains 14 different measurements of environmental data

(temperature, atmospheric pressure, wind direction, humidity,

etc.), which were recorded every 10 minutes from 01/01/2009

to 01/01/20173. This dataset is further split in training (47.5%),

validation (23.7%), and testing (28.6%) subsets. The training

subset should be large enough in order to include seasonal and

yearly weather trends.

Regarding both the GRU and LSTM implementations, the

Ptolemy predictions compared to the Keras ones and the actual

temperature values for 2500 weather measurements (every

10 minutes for a period of almost 17 days) are presented

in Figure 16 and Figure 17. The error between Keras and

Ptolemy predictions is zero - (absolute error (ptolemy, keras)),

so the Ptolemy networks make the same predictions as the

Keras implementations. The orange curved line depicts the

actual temperatures of that period of time. From the error

metrics (mean absolute error ≈ 2.4, MSE ≈ 9.5) we see

that the prediction performance of the two cells, the GRU

and the LSTM, is almost the same. Finally, Figure 18 shows

the Ptolemy model of the LSTM network predicting the 10

first values shown in Figure 17.

VI. CONCLUSIONS & FUTURE WORK

In this paper, the first known open-source GRU and LSTM

network actors are implemented in the Ptolemy framework to

enable the designers to develop their complex recurrent neural

networks using our fundamentals structures thus minimizing

the development and verification time. In addition, in order

to verify our models, a digit recognition and a weather

forecasting problem were used and the prediction results

show that the Ptolemy models make the same predictions as

Python/Keras. The purpose of our work is not the development

of neural networks for achieving high prediction accuracy, but

the accurate and detailed modeling of fundamental structures

of neural networks as they are utilized in modern CPS system

models.

Since our model implementations are related to neural

networks, their future extensions cover a wide range of appli-

cations. One of them, related for example to the temperature

forecasting problem, concerns a smart thermostat of a smart

2The model was trained using Python for 30 epochs. The resulted classifi-
cation accuracy is 95%.

3The model was trained based on the example of the paragraph 6.3 [36]

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 14. The GRU Network Predictor Implementation in Ptolemy

Fig. 15. The Neural Network Operation in Ptolemy

Fig. 16. GRU Network - Predictions Comparison

home. By placing sensors in appropriate places (e.g. on the

roof of the house), a system can be created which will

collect environmental measurements (temperature, humidity,

etc.), process them with machine learning techniques and then

through actuators the smart thermostat will be adjusted to

Fig. 17. LSTM Network - Predictions Comparison

operate properly, depending on the temperature forecast made.

Such an implementation will have significant advantages both

economically and ecologically, since the energy consumption

can be moved closer to optimal resulting in energy savings.

In general, the modeling of smart sensors using the library

developed in this paper is undoubtedly an interesting prospect

for the field of IoT and digital systems. Various deep learning

libraries can be developed in Ptolemy, which can ease the

modeling of smart sensors. This perspective has great eco-

nomic benefits, as the sensors will now be modeled and their

behavior will be controlled before they are built. The benefits

are also significant for the world of CPS, as these libraries can

contribute to the modeling of large-scale systems through the

predictions they can provide to dynamic behaviors.

VII. ACKNOWLEDGMENTS

This research is co-financed by a) Greece and the European

Union (European Social Fund - ESF) through the Operational

Programme ”Human Resources Development, Education and

Lifelong Learning” in the context of the project “Rein-

forcement of Postdoctoral Researchers - 2nd Cycle” (MIS-

5033021), implemented by the State Scholarships Foundation

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 18. Ptolemy LSTM Network Model Running

(IKY) for the author N.T. and b) the Hellenic Foundation

for Research and Innovation (H.F.R.I.) under the “First Call

for H.F.R.I. Research Projects to support Faculty members

and Researchers and the procurement of high-cost research

equipment grant” (Project Number: 2198) for the authors P.M.

and I.P.

REFERENCES

[1] The Ptolemy Project. [Online]. Available: http://ptolemy.eecs.berkeley.
edu/

[2] J. Cardoso and P. Siron, Ptolemy-HLA: A Cyber-Physical System

Distributed Simulation Framework. Cham: Springer International
Publishing, 2018, pp. 122–142. [Online]. Available: https://doi.org/10.1
007/978-3-319-95246-8 8

[3] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation

using Ptolemy II. Ptolemy.org, 2014. [Online]. Available: http:
//ptolemy.org/books/Systems

[4] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[5] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using
RNN encoder-decoder for statistical machine translation,” arXiv preprint

arXiv:1406.1078, 2014.
[6] Model-based design of cyber-physical systems in matlab and simulink.

[Online]. Available: https://www.mathworks.com/products/simulink.ht
ml

[7] Deepnetworkdesigner. [Online]. Available: https://www.mathworks.co
m/help/deeplearning/ref/deepnetworkdesignerapp.html?s tid=srchtitle

[8] The Modelica Association. [Online]. Available: https://www.modelica.o
rg/

[9] Openmodelica: Open-source modelica-based modeling and simulation
environment. [Online]. Available: https://www.openmodelica.org/

[10] Dymola systems engineering. multi-engineering modeling and
simulation based on modelica and fmi. [Online]. Available:
https://www.3ds.com/products-services/catia/products/dymola/

[11] Maplesim: Advanced system-level modeling. [Online]. Available:
https://www.maplesoft.com/products/maplesim/

[12] Scilab: open source software for numerical computation. [Online].
Available: https://www.scilab.org/

[13] Xcos: Dynamic systems modeler and simulator in discrete and
continuous time domains. [Online]. Available: https://www.scilab.org/s
oftware/xcos

[14] Gproms: Next generation modelling tools across the process lifecycle.
[Online]. Available: https://www.psenterprise.com/products/gproms

[15] Multiflash: Multiflash, kbc’s advanced thermodynamics software.
[Online]. Available: https://www.kbc.global/software/advanced-thermod
ynamics/

[16] Energyplus: energy simulation program. [Online]. Available: https:
//energyplus.net/

[17] Sumo: Simulation of urban mobility. [Online]. Available: http:
//sumo.sourceforge.net/

[18] I. Akkaya, “Data-driven cyber-physical systems via real-time stream
analytics and machine learning,” Ph.D. dissertation, UC Berkeley, 2016.

[19] I. Akkaya, S. Emoto, and E. A. Lee, “Pilot: An actor-oriented learning
and optimization toolkit for robotic swarm applications,” 2015.

[20] M. M. Kyaw, S. K. Ahmed, and Z. A. M. Sharrif, “Shape-based sorting
of agricultural produce using support vector machines in a matlab /
simulink environment,” in 2009 5th International Colloquium on Signal

Processing Its Applications, 2009, pp. 135–139.
[21] A. Vedaldi and K. Lenc, “Matconvnet - convolutional neural networks

for matlab,” 2016.
[22] D. Lee, B. Lee, and J. Shin, “Fault detection and diagnosis with modelica

language using deep belief network,” in 11th International Modelica

Conference, 09 2015, pp. 615–623.
[23] T. Peirelinck, F. Ruelens, and G. Decnoninck, “Using reinforcement

learning for optimizing heat pump control in a building model in mod-
elica,” in 2018 IEEE International Energy Conference (ENERGYCON),
2018, pp. 1–6.

[24] Priyadarshni and J. Sohal, “Improvement of artificial neural network
based character recognition system, using scilab,” Optik, vol.
127, no. 22, pp. 10 510 – 10 518, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0030402616305575

[25] Y. Wang, L. Liu, J. Cao, K. Feng, J. Fu, and C. Li, “Random forests
toolbox with scilab and its application,” in 2012 7th International

Conference on Computer Science Education (ICCSE), 2012, pp. 1082–
1085.

[26] F. Li, J. Zhang, E. Oko, and M. Wang, “Modelling of a post-combustion
co2 capture process using extreme learning machine,” in 2016 21st

International Conference on Methods and Models in Automation and

Robotics (MMAR), 2016, pp. 1252–1257.
[27] A. Jose Gomes da Silva, “Hybrid modelling / machine learning for soft-

sensing and process modelling,” Ph.D. dissertation, Instituto Superior
Tecnico, Lisboa, Portugal, 2018.

[28] W. Pereira, A. Bögl, and T. Natschläger, “Sensitivity analysis and
validation of an energyplus model of a house in upper austria,” Energy

Procedia, vol. 62, pp. 472 – 481, 2014, 6th International Conference on
Sustainability in Energy and Buildings, SEB-14. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1876610214034407

[29] J. Sanyal, J. New, R. E. Edwards, and L. Parker, “Calibrating
building energy models using supercomputer trained machine learning
agents,” Concurrency and Computation: Practice and Experience,
vol. 26, no. 13, pp. 2122–2133, 2014. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.3267

[30] Life project, reinforcement learning, sumo, and complex urban traffic
management. [Online]. Available: https://becominghuman.ai/reinforce
ment-learning-sumo-and-complex-urban-traffic-management-82e3b8cd
d110

[31] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E.
Hubbard, and L. D. Jackel, “Handwritten digit recognition with a back-
propagation network,” in Advances in neural information processing

systems, 1990, pp. 396–404.
[32] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Repre-

sentations by Back-Propagating Errors. Cambridge, MA, USA: MIT
Press, 1988, p. 696–699.

[33] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proceed-

ings of the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.
[34] Understanding LSTM Networks. Accessed: 2020-10-21. [Online].

Available: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[35] Using neural nets to recognize handwritten digits. [Online]. Available:

http://neuralnetworksanddeeplearning.com/chap1.html
[36] F. Chollet, Deep Learning with Python, 1st ed. USA: Manning

Publications Co., 2017.

Authorized licensed use limited to: Aristotle University of Thessaloniki. Downloaded on January 18,2022 at 13:46:55 UTC from IEEE Xplore. Restrictions apply.

		2021-10-28T12:50:39-0400
	Certified PDF 2 Signature

